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Article Info  Abstract 

Most epidemic data are discretely observed at irregular-time interval subject to 
environmental influence. No doubt, the dynamic of such epidemic data can be well 
described by discretely observed method of estimation. However, parameter estimation 
under such process proves to be challenging in practice. The challenges normally 

encounter are generally in the intractability of the transition densities, resulting into the 
likelihood functions which are not in closed form. Direct implementation of classical 
method of statistical estimation often results into convergences problems. Indeed, 
literatures have not adequately addressed such challenges in practice. To this end, this 

article is design to examining and address the estimation problems which is usually 
plagued with convergences. We adopted Bayesian data-augmentation method of 
parameters estimation for such problems. The proposed method is applied to simulation 
dataset. Results obtained encourage that this method of parameters estimate has ability 

to solve challenges encounters in the literature. 
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1. INTRODUCTION 
 
Most epidemic data are discretely observed and undergo stochastic transition rate. Stochastic 
epidemic models allow more realistic description of the transmission of disease as compared to 

deterministic epidemic models [1-3]. However, parameter estimation is challenging for discretely 

observed data under stochastic models [4,5]. Several methods of frequentist procedures to infer 

on such models were been considered in the literatures. Most techniques struggle when inter-

observation times are large. 
 

Over the last two decades, a number of epidemic models for virus spread through human 

population have been proposed, based on either the classical Susceptible-Infected-Removed (SIR) 

model developed by [6], or the classical Susceptible-Exposed –Infected-Removed (SEIR) model 

developed by [7]. 
 

In line with aforementioned epidemic models, this article employs Bayesian estimation approach 

with Stochastic Differential Equation (SDE) technique to model and estimate parameters of such 

models. Stochastic Differential Equation (SDE) models play prominent role in a range of 

application areas, including Biology, Chemistry, Epidemiology, Mechanics, Microelectronics, 
Economics, and Finance [8-14]. Likewise, several methods of estimating parameters in the 

discrete-time version of stochastic differential equations have been considered in the literature. 

A complete understanding of SDE theory requires familiarity with advanced probability and 

stochastic processes. These processes were often referred to as a diffusion process. 
 

Diffusion processes have an advantage over some of the other stochastic formulations, in that, 

they can be easily derived directly from the deterministic system of ordinary differential equations 

and have relatively simple form [15]. Diffusion processes are a promising instrument to 

realistically model the time-continuous evolution of natural phenomena. To implement Diffusion 
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 process, the best convenience idea is to introduce numerical methods of estimation via the Euler-

Maruyama scheme, which employs discrete-time into continuous time models as numerical 

approximation. The reason for this is that most transition probabilities in diffusion processes are 
intractable, unless the diffusion process is analytically explicitly solvable, which are rarely the 

cases. Here the idea is to discretized diffusion process that would allow numerical solution 

approaches to solve this intractability challenges [16]. 
 

Bayesian approach to inference in the field of epidemiology had been growing in popularity over 
the past two decades [17]. One common approach in the literature for Bayesian estimation of 

diffusion models, studied independently by [12,13,18], are to consider estimating diffusion 

models on the basis of discrete measurements as a classic missing-data problem. The idea is to 

introduce augmented data points between every two consecutive observed data points so that 

the likelihood can be well approximated.  
 

Generally, the idea behind Bayesian inference is that the likelihood and prior are combined using 

Bayes’ theorem to compute the posterior distribution. Bayesian method combine prior evidence 
on the parameters contained in the density π(θ) with the likelihood π(x|θ) to produce the entire 

posterior density π(θ|x), from which, one may extract any information of a parameter, as in 

maximum likelihood estimations [19,20]. 
 

 

2. MATERIALS AND METHOD 
 

Since mostly epidemic data are discretely observed, the best way to consider the dynamic of such 
data can be well described by discretized-version of stochastic differential equation (diffusion). 

Diffusion process is described as a solution to solve differential equation (Stochastic process).  
 

The Bayesian method of estimation under diffusion process is particularly suited to discrete 

observed data, such as in epidemic cases, because the parameters of interest are usually defined 
in terms of individuals, this approach make more researchers to consider the Bayesian method 

of parameters estimate over the other methods of estimation. Here we can seek a numerical 

solution via the Euler-Maruyama approximation. The idea is to discretized the diffusion 

continuous model in by Euler Scheme as [16]   

 
            (1) 

 

where ),(  tX denoted the drift of the model, ),(  tX denoted the volatility of the model and ΔWt 

~ Nd(0, IΔt) random vector. In (1) a small time increment Δt, result into the scheme that converged 

to Stochastic differential equation. 

 

2.1 Likelihood Function 

However, from the Markovian property of the diffusion, it is possible to defined the transition 

density from value Xtk at time t to Xtk+1 at time T. Therefore, the likelihood function of the 

numerical solution of diffusion process (1) is of the form: 
 

           (2) 

 

 
where, π(xtk+1|xtk ,θ) denotes the transition density of the process Xt from Xtk = xtk to Xtk+1 = xtk+1. 

 
Model transition density π(xtk+1|xtk ,θ) is not explicitly known and this is indeed a problem in the 

model under study. Since the maximum likelihood estimation would be intractable. We therefore 

considered Bayesian method of estimation. 
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2.2 Bayesian Inference  

In statistics, Bayesian inference is a method of inference in which Bayes’ rule is used to update 
the probability estimate for a hypothesis as additional evidence is required [19,20]. The idea 

behind Bayesian inference is that the likelihood and prior are combined using Bayes’ theorem to 

compute the posterior distribution. 
 

Bayesian method combine prior evidence on the parameters contained in the density π(θ) with 
the likelihood π(x|θ) to produce the entire posterior density π(θ|x) of θ. From which, one may 

extract any information of a parameter, as with maximum likelihood estimations. 

The posterior density from (2) is given thus:

                         

 

                                                                                                                                                            

                                                                                                                                              (3) 

 
 

where π(θ) is the prior distribution of θ and the π(θ|DT) is the posterior distribution of the 

parameter given observed data. The Euler-transistion density is of the form: 

 

                                                                                                                                              (4) 
 

We also adopted a data augmentation approach to fill up the low frequency gap in solve the 

convergence challenges uncounters in the literatures. 

Under data augmentation we inserting  additional m-1 time points in between times [tk+1,tk]. 

Thus: 

                 1)1(1   kmkkmkmk tt  
              , k = 0, ..., K              (5)
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To solve such bridge, we considered Modified Diffusion Bridge proposed by [20]. 

[20] assumed that the starting point (x0 = xτk) and the end point (xT=xτm) are observed.  

The proposal density take the form: 

 
               ),(,),(;),,|( 11 kkkkTkk xxxxNxxxq                                        (6)

 

 
Under the univariate, the Modified diffusion bridge method is of the form: 

 
                                                               , k = 0, ..., m-1                                  (7) 

                                                                        
  where                                                       ,and  

 
 
The marginal posterior density for the imputed data π(x|xτk,xτm,θ) has acceptance 

Probability of the form: 
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 Therefore, the joint posterior for parameters and augmented or imputed data as the density 

     (9) 

 
 

 

In practice, the construction of a suitable proposal density could be difficult. However, for many 

problems of interest, it may be possible to sample from the full conditional distributions for a 

subset of θ as the Gibbs Sampler. We therefore adopted the sample via Markov Chain Mote Carlo 

(MCMC) scheme.  
 

2.3 Markov Chain Monte Carlo (MCMC) 

Markov Chain Monte Carlo (MCMC) is a very powerful tool employed to (approximately) draw 
samples from a specific distribution, often called the target distribution. Most of the MCMC 

algorithms used in practice satisfy the conditions which ensure convergence to the invariant 

distribution. From a statistical perspective, the convergence in distribution of the Markov Chain 
to invariant distribution is exploited to estimate expectations under the invariant measure. The 

acceptance Probability for the parameters is of the form: 
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Under this update scheme, the MCMC has imputed values m. Now, we alternate between draw 
of sampling from the parameters of interest and the imputed values. Thus, a situation where the 

scheme becomes degenerate should not occur. 

 (i)  θ | w, DT                 --For parameter update  

 (ii) w | θ, DT                -- For the innovation path update  

If the full conditional distribution for the jth component of θ be denoted by 

),|(),,,,,,,|( 1121 TjjTpjjj DD    
  
j = 1, ... , p.Then, the algorithm for componentwise 

transitions is given by: 

 

 

Algorithm 1. Metropolis-within-Gibbs sampler 

___________________________________________________________________________ 
1. Initialise the iteration counter to j=1 and initialise the chain with θ(0)= (θ1(0), θ2(0),..., θp(0))1 
2. Obtain a new value θ(j)  = (θ1(j), θ2(j),..., θp(j))1from θ(j-1)  by successive generation of values 
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3. Change counters j to j+1, and return to step 2.  

If the full conditional distribution for the jth component of θ is available to sample from directly, 

the resulting acceptance probability is one. 
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 One way of testing the convergence is to see a well chain mixing or moving around the parameter 

space. Trace plots document the magnitude of the sample drawn (y-axis) at each iteration (x-

axis) of the Markov Chain Monte Carlo (MCMC) procedure. Once the chain has identified the 
stationary distribution of samples, the samples that are drawn will appear to have been randomly 

sampled from the same region of the y-axis. The below are the results of well and bad 

convergence. 

                
Figure 1. Well mixing trace plot (Stationary) and bad mixing trace plot 

 

2.5 Epidemic Model 

We implored the stochastic SEIR epidemic model for infectious disease that based on three 
dimensional processes, with the first component St represents the susceptible individuals, the 

second component Et represents the exposed individuals and the third component It represents 

the infection individual infected at time t. 

Therefor, the Diffusion SEIR Epidemic Model is of the form:  
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(11)       

 

 
3. RESULTS AND DISCUSSIONS 

 

We demonstrate the performance of aforementioned methods by simulation approach on the 

stochastic SEIR epidemic model for infectious diseases based on three dimensional diffusion 

process with drift and diffusion coefficient parameterised  proposed in [22].   
The state variable Xt = (s, e, i)T, where, s represents the susceptible individuals, e represent 

exposed individuals, and i  represent the infection component of individuals infected. 

 

3.1 Simulation 

We let the initial conditions of this state variables values X0 = (5363500, 1, 25)T respectively. 

From the model (11), the parameter of interest denoted by θ = (β, γ, α)T.  

With initialised the parameters of the sampler with 0 < β < 1, 0 < γ < 0.7 and 0.1 < α < 1 for the 
randomness of the transmission rate β, exposed rate γ and infection rate α respectively.  

The iterations were performed for 103 and 104 using Metropolis-Within- Gibbs sampler. With the 

different number of imputed time points of m = 5, m = 15 and m = 50. We considered 

independently distribution for the proposal of parameter of interest Nd(0, ψj
2), where ψj

2 is the 

chosen variance, turning until we have (0.009, 0.009, 0.001)T.  
We choose an uninformative prior for each of the parameter, and apply the MCMC scheme to 

infer the posterior values of the model. 

 

To show that the method does not degenerate when increasing the number of imputed time 

points. We set the starting time point at t0 = 0 and end-time at T = 30, with equidistant time 

interval Δτ = 0.001. And the results were depicted below. 
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Figure  2. The trace plot and the density plot for the three parameters 

 

Figure 2(a) shows the trace plot for the three parameters, the trace plot mixing very well. And (b) 
shows the density plot for the modified innovation scheme for three different imputed values, the 

three imputed were very closed.   

 

 
Figure 3. Shows the result of Autocorrelation plot 

 

 

The results obtained from posterior distribution when the number of imputed points increases 

does not worsen the mixing of the chain as was see in auto-correlation curve in figure 3.  
 

 

 

 

 
 

 

 



Aliu, FJAS 2021, 1(1): 61-68 

 
FEDPOLEL JOURNAL OF APPLIED SCIENCES 

https://fedpoleljournalofappliedsciences.com/  
 
 

6
7

 

 
Figure 4. Shows the Acceptance probability plot for the three parameters 

 

Figure 4. Shows the Acceptance probability for Modified Innovation Scheme method of path 

update for three different value of imputed observation time (red = Modified Diffusion Bridge, 

green = Diffusion Bridge and the black represent the Euler proposal). We have both parameters 
and path update that were consistent. Likewise, the situation where the scheme becomes 

degenerate does not occur. 

 

4. CONCLUSIONS 

Most epidemic data are discretely observed and undergo stochastic transition rate. The 
frequentist based method of inference can be problematic, as the transition densities were rarely 

available in closed form. This article contributes to stochastic epidemic modeling using diffusion 

approximation approach as well as Bayesian data-augmentation statistical estimation in 

discretely observed diffusion processes. The utilisation of diffusion approximations, coupled with 

Bayesian inference techniques in the modeling of the spread of infectious diseases (epidemic 

models), is new. There are few amount of literature regarding, diffusion epidemic models. The 
extensive simulation study revealed that satisfactory estimation results for the parameters of 

interest were obtained. The combined application of diffusion epidemic modeling and Bayesian 

inference, promises to supply new insights in many exciting areas of natural phenomena in the 

future.  
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